#include #include /* * lowres.c * * Yannis Smaragdakis * * This file defines a routine that reads JPEG data from a socket and * creates a memory buffer with this data at much lower quality (to * reduce storage requirements). * * I have put a limit of two hours on the time I will work on this, * so this is not a mature piece of code. It should do the work, * though. * * Look at example.c and libjpeg.doc for more info on using the IJG code. */ #define LOW_QUALITY 10 #include /* * Include file for users of JPEG library. * You will need to have included system headers that define at least * the typedefs FILE and size_t before you can include jpeglib.h. * (stdio.h is sufficient on ANSI-conforming systems.) * You may also wish to include "jerror.h". */ #ifdef __cplusplus extern "C" { #endif #include "jpeglib.h" /* * is used for the optional error recovery mechanism shown in * the second part of the example. */ #include extern int write_JPEG_file(JSAMPARRAY, int,int, int, int, J_COLOR_SPACE,JOCTET **, int *); /* * ERROR HANDLING: * * The JPEG library's standard error handler (jerror.c) is divided into * several "methods" which you can override individually. This lets you * adjust the behavior without duplicating a lot of code, which you might * have to update with each future release. * * Our example here shows how to override the "error_exit" method so that * control is returned to the library's caller when a fatal error occurs, * rather than calling exit() as the standard error_exit method does. * * We use C's setjmp/longjmp facility to return control. This means that the * routine which calls the JPEG library must first execute a setjmp() call to * establish the return point. We want the replacement error_exit to do a * longjmp(). But we need to make the setjmp buffer accessible to the * error_exit routine. To do this, we make a private extension of the * standard JPEG error handler object. (If we were using C++, we'd say we * were making a subclass of the regular error handler.) * * Here's the extended error handler struct: */ struct my_error_mgr { struct jpeg_error_mgr pub; /* "public" fields */ jmp_buf setjmp_buffer; /* for return to caller */ }; typedef struct my_error_mgr * my_error_ptr; /* * Here's the routine that will replace the standard error_exit method: */ METHODDEF(void) my_error_exit (j_common_ptr cinfo) { /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */ my_error_ptr myerr = (my_error_ptr) cinfo->err; /* Always display the message. */ /* We could postpone this until after returning, if we chose. */ (*cinfo->err->output_message) (cinfo); /* Return control to the setjmp point */ longjmp(myerr->setjmp_buffer, 1); } #define MAX_LINESZ 200 /* * Sample routine for JPEG decompression. We assume that a socket * from which the source is read is passed in. * We want to return 1 on success, 0 on error. */ int change_res_JPEG (int insocket, char ** output, int *output_size) { /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct my_error_mgr jerr; /* More stuff */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ FILE *infile = fdopen(insocket, "r"); /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(&cinfo); fclose(infile); return 0; } /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(&cinfo, infile); /* Step 3: read file parameters with jpeg_read_header() */ (void) jpeg_read_header(&cinfo, TRUE); /* We can ignore the return value from jpeg_read_header since * (a) suspension is not possible with the stdio data source, and * (b) we passed TRUE to reject a tables-only JPEG file as an error. * See libjpeg.doc for more info. */ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by * jpeg_read_header(), so we do nothing here. */ /* Step 5: Start decompressor */ (void) jpeg_start_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. * In this example, we need to make an output work buffer of the right size. */ /* JSAMPLEs per row in output buffer */ row_stride = cinfo.output_width * cinfo.output_components; buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, cinfo.output_height); /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ while (cinfo.output_scanline < cinfo.output_height) { /* jpeg_read_scanlines expects an array of pointers to scanlines.*/ (void) jpeg_read_scanlines(&cinfo, &buffer[cinfo.output_scanline], cinfo.output_height); } /* Perform the size reduction */ write_JPEG_file(buffer, cinfo.output_width, cinfo.output_height, cinfo.output_components, cinfo.out_color_space, LOW_QUALITY, (JOCTET **)output, output_size); /* Step 7: Finish decompression */ (void) jpeg_finish_decompress(&cinfo); /* YANNIS: What a deranged idea! Buffers allocated using the JPEG allocator are freed when the "jpeg_finish_decompress" routine is called, not when "jpeg_destroy_decompress" is called! */ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_decompress(&cinfo); /* After finish_decompress, we can close the input file. * Here we postpone it until after no more JPEG errors are possible, * so as to simplify the setjmp error logic above. (Actually, I don't * think that jpeg_destroy can do an error exit, but why assume anything...) */ fclose(infile); /* At this point you may want to check to see whether any corrupt-data * warnings occurred (test whether jerr.pub.num_warnings is nonzero). */ /* And we're done! */ return 1; } #ifdef __cplusplus } #endif