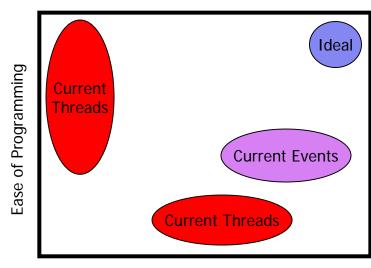

(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley
{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

The Stage


- Highly concurrent applications
 - Internet servers (Flash, Ninja, SEDA)
 - Transaction processing databases
- Workload
 - Operate "near the knee"
 - Avoid thrashing!
- What makes concurrency hard?
 - Race conditions
 - Scalability (no O(n) operations)
 - Scheduling & resource sensitivity
 - Inevitable overload
 - Code complexity

Load (concurrent tasks)

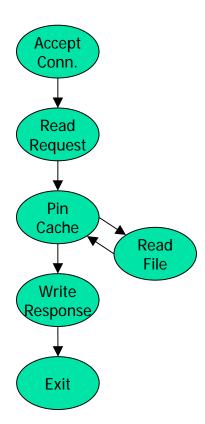
- Performance vs. Programmability
 - Current threads pick one
 - Events somewhat better
- Questions
 - Threads vs. Events?
 - How do we performance and programmability?

Performance

Our Position

- Thread-event duality still holds
- But threads are better anyway
 - More natural to program
 - Better fit with tools and hardware
- Compiler-runtime integration is key

The Duality Argument


- General assumption: follow "good practices"
- Observations
 - Major concepts are analogous
 - Program structure is similar
 - Performance should be similar
 - Given good implementations!

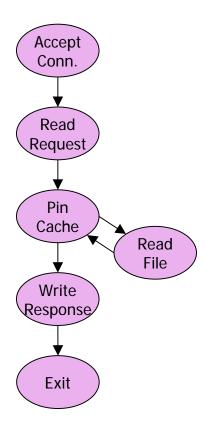
Threads

- Monitors
- Exported functions
- Call/return and fork/join
- Wait on condition variable

Events

- Event handler & queue
- Events accepted
- Send message / await reply
- Wait for new messages

The Duality Argument


- General assumption: follow "good practices"
- Observations
 - Major concepts are analogous
 - Program structure is similar
 - Performance should be similar
 - Given good implementations!

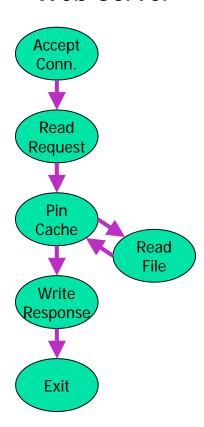
Threads

- Monitors
- Exported functions
- Call/return and fork/join
- Wait on condition variable

Events

- Event handler & queue
- Events accepted
- Send message / await reply
- Wait for new messages

The Duality Argument

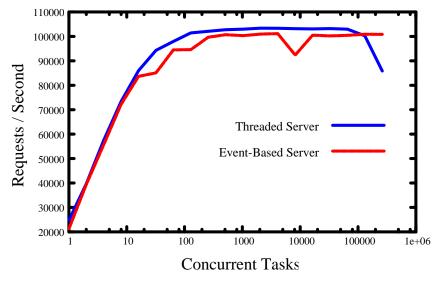

- General assumption: follow "good practices"
- Observations
 - Major concepts are analogous
 - Program structure is similar
 - Performance should be similar
 - Given good implementations!

Threads

- Monitors
- Exported functions
- Call/return and fork/join
- Wait on condition variable

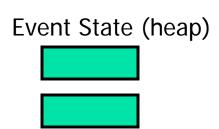
Events

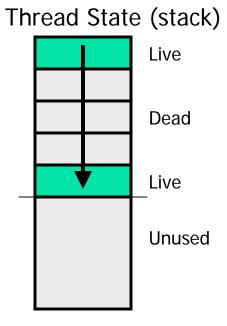
- Event handler & queue
- Events accepted
- Send message / await reply
- Wait for new messages



"But Events Are Better!"

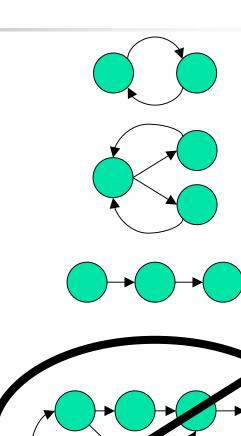
- Recent arguments for events
 - Lower runtime overhead
 - Better live state management
 - Inexpensive synchronization
 - More flexible control flow
 - Better scheduling and locality
- All true but...
 - No inherent problem with threads!
 - Thread implementations can be improved


- Criticism: Threads don't perform well for high concurrency
- Response
 - Avoid O(n) operations
 - Minimize context switch overhead
- Simple scalability test
 - Slightly modified GNU Pth
 - Thread-per-task vs. single thread
 - Same performance!



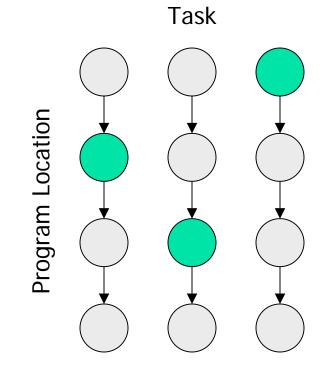
Live State Management

- Criticism: Stacks are bad for live state
- Response
 - Fix with compiler help
 - Stack overflow vs. wasted space
 - Dynamically link stack frames
 - Retain dead state
 - Static lifetime analysis
 - Plan arrangement of stack
 - Put some data on heap
 - Pop stack before tail calls
 - Encourage inefficiency
 - Warn about inefficiency

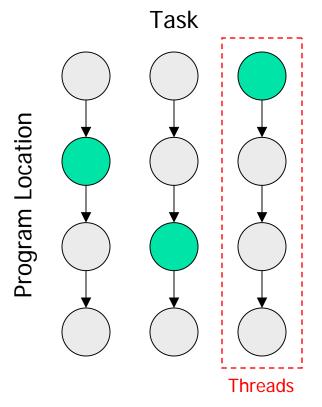


Synchronization

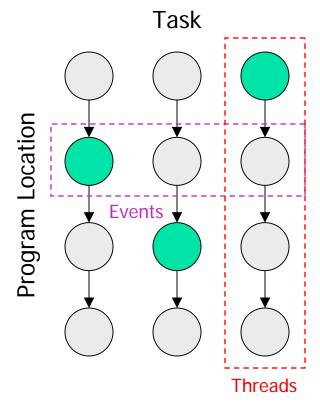
- Criticism: Thread synchronization is heavyweight
- Response
 - Cooperative multitasking works for threads, too!
 - Also presents same problems
 - Starvation & fairness
 - Multiprocessors
 - Unexpected blocking (page faults, etc.)
 - Compiler support helps


Control Flow

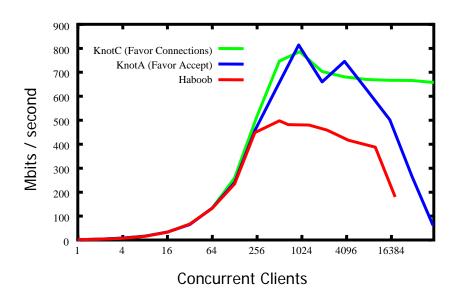
- Criticism: Threads have restricted control flow
- Response
 - Programmers use simple patterns
 - Call / return
 - Parallel calls
 - Pipelines
 - Complicated patterns are unnatural
 - Hard to understand
 - Likely to cause bugs



- Criticism: Thread schedulers are too generic
 - Can't use application-specific information
- Response
 - 2D scheduling: task & program location
 - Threads schedule based on task only
 - Events schedule by location (e.g. SEDA)
 - Allows batching
 - Allows prediction for SRCT
 - Threads can use 2D, too!
 - Runtime system tracks current location
 - Call graph allows prediction


Scheduling

- Criticism: Thread schedulers are too generic
 - Can't use application-specific information
- Response
 - 2D scheduling: task & program location
 - Threads schedule based on task only
 - Events schedule by location (e.g. SEDA)
 - Allows batching
 - Allows prediction for SRCT
 - Threads can use 2D, too!
 - Runtime system tracks current location
 - Call graph allows prediction


Scheduling

- Criticism: Thread schedulers are too generic
 - Can't use application-specific information
- Response
 - 2D scheduling: task & program location
 - Threads schedule based on task only
 - Events schedule by location (e.g. SEDA)
 - Allows batching
 - Allows prediction for SRCT
 - Threads can use 2D, too!
 - Runtime system tracks current location
 - Call graph allows prediction

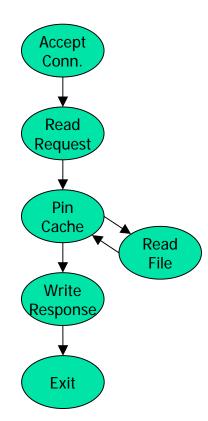
The Proof's in the Pudding

- User-level threads package
 - Subset of pthreads
 - Intercept blocking system calls
 - No O(n) operations
 - Support > 100K threads
 - 5000 lines of C code
- Simple web server: Knot
 - 700 lines of C code
- Similar performance
 - Linear increase, then steady
 - Drop-off due to pol I () overhead

Our Big But...

- More natural programming model
 - Control flow is more apparent
 - Exception handling is easier
 - State management is automatic
- Better fit with current tools & hardware
 - Better existing infrastructure
 - Allows better performance?

Control Flow


- Events obscure control flow
 - For programmers and tools

Threads

```
thread_main(int sock) {
    struct session s;
    accept_conn(sock, &s);
    read_request(&s);
    pin_cache(&s);
    write_response(&s);
    unpin(&s);
}

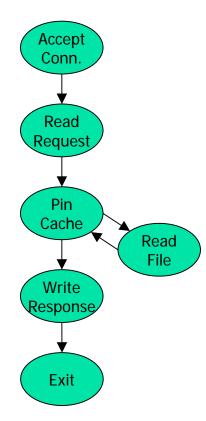
pin_cache(struct session *s) {
    pin(&s);
    if(!in_cache(&s))
        read_file(&s);
}
```

Events

Co

Control Flow

- Events obscure control flow
 - For programmers and tools


Threads

```
thread_main(int sock) {
    struct session s;
    accept_conn(sock, &s);
    read_request(&s);
    pin_cache(&s);
    write_response(&s);
    unpin(&s);
}

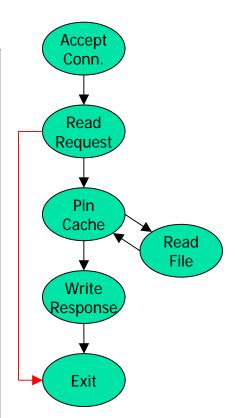
pin_cache(struct session *s) {
    pin(&s);
    if(!in_cache(&s))
        read_file(&s);
}
```

Events

```
CacheHandler(struct session *s) {
    pin(s);
    if(!in_cache(s)) ReadFileHandler.enqueue(s);
    else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
    ...; CacheHandler.enqueue(s);
}
...
ExitHandlerr(struct session *s) {
    ...; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
    struct session *s = new_session(e);
    RequestHandler.enqueue(s); }
```


Exceptions

- Exceptions complicate control flow
 - Harder to understand program flow
 - Cause bugs in cleanup code


Threads

```
thread_main(int sock) {
    struct session s;
    accept_conn(sock, &s);
    if(!read_request(&s))
        return;
    pin_cache(&s);
    write_response(&s);
    unpin(&s);
}

pin_cache(struct session *s) {
    pin(&s);
    if(!in_cache(&s))
        read_file(&s);
```

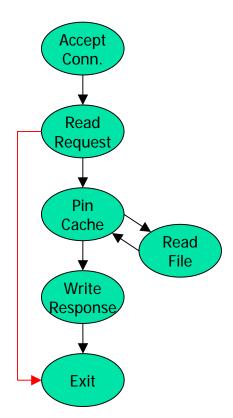
Events

```
CacheHandler(struct session *s) {
    pin(s);
    if(!in_cache(s)) ReadFileHandler.enqueue(s);
    else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
    ...; if( error ) return; CacheHandler.enqueue(s);
}
...
ExitHandler(struct session *s) {
    ...; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
    struct session *s = new_session(e);
    RequestHandler.enqueue(s); }
```


State Management

- Events require manual state management
- Hard to know when to free

Use GC or risk bugs


Threads

```
thread_main(int sock) {
    struct session s;
    accept_conn(sock, &s);
    if(!read_request(&s))
        return;
    pin_cache(&s);
    write_response(&s);
    unpin(&s);
}

pin_cache(struct session *s) {
    pin(&s);
    if(!in_cache(&s);
        read_file(&s);
}
```

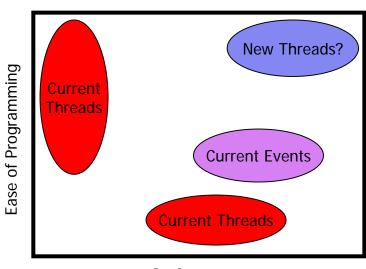
Events

```
CacheHandler(struct session *s) {
    pin(s);
    if(!in_cache(s)) ReadFileHandler.enqueue(s);
    else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
    ...; if( error ) return; CacheHandler.enqueue(s);
}
...
ExitHandler(struct session *s) {
    ...; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
    struct session *s = new_session(e);
    RequestHandler.enqueue(s); }
```


Existing Infrastructure

- Lots of infrastructure for threads
 - Debuggers
 - Languages & compilers
- Consequences
 - More amenable to analysis
 - Less effort to get working systems

Better Performance?


- Function pointers & dynamic dispatch
 - Limit compiler optimizations
 - Hurt branch prediction & I-cache locality
- More context switches with events?
 - Example: Haboob does 6x more than Knot
 - Natural result of queues
- More investigation needed!

The Future: Compiler-Runtime Integration

- Insight
 - Automate things event programmers do by hand
 - Additional analysis for other things
- Specific targets
 - Dynamic stack growth*
 - Live state management
 - Synchronization
 - Scheduling*
- Improve performance and decrease complexity

Conclusion

- Threads ≈ Events
 - Performance
 - Expressiveness
- Threads > Events
 - Complexity / Manageability
- Performance and Ease of use?
 - Compiler-runtime integration is key

Performance